Rolling element bearing fault detection in industrial environments based on a K-means clustering approach
نویسندگان
چکیده
A K-means clustering approach is proposed for the automated diagnosis of defective rolling element bearings. Since K-means clustering is an unsupervised learning procedure, the method can be directly implemented to measured vibration data. Thus, the need for training the method with data measured on the specific machine under defective bearing conditions is eliminated. This fact consists the major advantage of the method, especially in industrial environments. Critical to the success of the method is the feature set used, which consists of a set of appropriately selected frequency-domain parameters, extracted both from the raw signal, as well as from the signal envelope, as a result of the engineering expertise, gained from the understanding of the physical behavior of defective rolling element bearings. Other advantages of the method are its ease of programming, simplicity and robustness. In order to overcome the sensitivity of the method to the choice of the initial cluster centers, the initial centers are selected using features extracted from simulated signals, resulting from a well established model for the dynamic behavior of defective rolling element bearings. Then, the method is implemented as a two-stage procedure. At the first step, the method decides whether a bearing fault exists or not. At the second step, the type of the defect (e.g. inner or outer race) is identified. The effectiveness of the method is tested in one literature established laboratory test case and in three different industrial test cases. Each test case includes successive measurements from bearings under different types of defects. In all cases, the method presents a 100% classification success. Contrarily, a K-means clustering approach, which is based on typical statistical time domain based features, presents an unstable classification behavior. 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملBearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm
Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...
متن کاملA Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملDetection of lung cancer using CT images based on novel PSO clustering
Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...
متن کاملRolling Bearing Fault Analysis by Interpolating Windowed DFT Algorithm
This paper focuses on the problem of accurate Fault Characteristic Frequency (FCF) estimation of rolling bearing. Teager-Kaiser Energy Operator (TKEO) demodulation has been applied widely to rolling bearing fault detection. FCF can be extracted from vibration signals, which is pre-treatment by TEKO demodulation method. However, because of strong noise background of fault vibration signal, it is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 38 شماره
صفحات -
تاریخ انتشار 2011